## Peter Robinson

My research focuses on designing new distributed and parallel algorithms, the distributed processing of big data, achieving fault-tolerance in communication networks against adversarial attacks, and developing robust protocols that work in highly dynamic environments such as peer-to-peer Blockchain networks and mobile ad-hoc networks.

## News

- General Chair of ACM PODC 2019
- Program committee member of PODC 2020, SIROCCO 2020, DISC 2019

## Tags (Show all)

Asynchrony Big Data Byzantine Failures Churn Communication Complexity Distributed Agreement Distributed Storage Dynamic Network Fault-Tolerance Gossip Communication Graph Algorithm Haskell Information Complexity Leader Election Machine Learning Mobile Ad-Hoc Network Natural Language Processing P2P Secure Computation in Networks Self-Healing Symmetry Breaking Wireless Networks## Publications

2013

- Search and Storage in Dynamic Peer-to-Peer NetworksPDFDOI

John Augustine, Anisur Molla, Ehab Morsy, Gopal Pandurangan, Peter Robinson, Eli Upfal. 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2013).

AbstractWe study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability even under high adversarial churn. In particular, we present the following main results: \begin{enumerate} \item A randomized distributed search algorithm that with high probability guarantees that searches from as many as $n - o(n)$ nodes ($n$ is the stable network size) succeed in ${O}(\log n )$-rounds despite ${O}(n/\log^{1+\delta} n)$ churn, for any small constant $\delta > 0$, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm). \item A storage and maintenance algorithm that guarantees, with high probability, data items can be efficiently stored (with only $\Theta(\log{n})$ copies of each data item) and maintained in a dynamic P2P network with churn rate up to ${O}(n/\log^{1+\delta} n)$ per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as $n - o(n)$ nodes can efficiently store, maintain, and search even under ${O}(n/\log^{1+\delta} n)$ churn per round. Our algorithms require only polylogarithmic in $n$ bits to be processed and sent (per round) by each node. \end{enumerate} To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step). Furthermore, they are localized (i.e., do not require any global topological knowledge) and scalable. A technical contribution of this paper, which may be of independent interest, is showing how random walks can be provably used to derive scalable distributed algorithms in dynamic networks with adversarial node churn.

## Code

I'm interested in parallel and distributed programming and related technologies such as software transactional memory and the actor-model. Recently, I have been working on implementing a simulation environment for distributed algorithms in Elixir/Erlang, and implementing non-blocking data structures in Haskell suitable for multi-core machines. Below is a (non-comprehensive) list of software that I have written.

- concurrent hash table: a thread-safe hash table that scales to multicores.
- data dispersal: an implementation of an (m,n)-threshold information dispersal scheme that is space-optimal.
- secret sharing: an implementation of a secret sharing scheme that provides information-theoretic security.
- tskiplist: a data structure with range-query support for software transactional memory.
- stm-io-hooks: An extension of Haskell's Software Transactional Memory (STM) monad with commit and retry IO hooks.
- Mathgenealogy: Visualize your (academic) genealogy! A program for extracting data from the Mathematics Genealogy project.
- I extended Haskell's Cabal, for using a "world" file to keep track of installed packages. (Now part of the main distribution.)

## Teaching

- Database Systems, Spring 2020.
- Computer Networks, Fall 2019.
- Distributed Computing, Spring 2019.
- Randomized Algorithms, Fall 2018: Intro slides. Part 1 on Concentration Bounds.
- Advanced Distributed Systems, Fall 2016, 2017.
- Computation with Data, Fall 2016.
- Internet and Web Technologies, Spring 2016.
- Networks and Communications, Fall 2015.

## Misc

- Google scholar profile
- My profile on StackExchange